3D Vision by Using Calibration Pattern with Inertial Sensor and RBF Neural Networks
نویسنده
چکیده
Camera calibration is a crucial prerequisite for the retrieval of metric information from images. The problem of camera calibration is the computation of camera intrinsic parameters (i.e., coefficients of geometric distortions, principle distance and principle point) and extrinsic parameters (i.e., 3D spatial orientations: ω, ϕ, κ, and 3D spatial translations: t(x), t(y), t(z)). The intrinsic camera calibration (i.e., interior orientation) models the imaging system of camera optics, while the extrinsic camera calibration (i.e., exterior orientation) indicates the translation and the orientation of the camera with respect to the global coordinate system. Traditional camera calibration techniques require a predefined mathematical-camera model and they use prior knowledge of many parameters. Definition of a realistic camera model is quite difficult and computation of camera calibration parameters are error-prone. In this paper, a novel implicit camera calibration method based on Radial Basis Functions Neural Networks is proposed. The proposed method requires neither an exactly defined camera model nor any prior knowledge about the imaging-setup or classical camera calibration parameters. The proposed method uses a calibration grid-pattern rotated around a static-fixed axis. The rotations of the calibration grid-pattern have been acquired by using an Xsens MTi-9 inertial sensor and in order to evaluate the success of the proposed method, 3D reconstruction performance of the proposed method has been compared with the performance of a traditional camera calibration method, Modified Direct Linear Transformation (MDLT). Extensive simulation results show that the proposed method achieves a better performance than MDLT aspect of 3D reconstruction.
منابع مشابه
Calibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation
The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...
متن کاملAircraft Visual Identification by Neural Networks
In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...
متن کاملA Comparison of RBF Neural Network Training Algorithms for Inertial Sensor Based Terrain Classification
This paper introduces a comparison of training algorithms of radial basis function (RBF) neural networks for classification purposes. RBF networks provide effective solutions in many science and engineering fields. They are especially popular in the pattern classification and signal processing areas. Several algorithms have been proposed for training RBF networks. The Artificial Bee Colony (ABC...
متن کاملData Fusion Calibration for a 3D Laser Range Finder and a Camera using Inertial Data
The use of 3D laser range nder (LRF) and cameras is increasingly common in the navigation application for mobile robots. This paper proposes a new method to perform the extrinsic calibration between a pinhole camera and a 3D-LRF with the aid of an Inertial Measurement Unit (IMU). While state of the art calibration procedures require a large number of points for robust calibration, the proposed ...
متن کاملCamera-Inertial Sensor modelling and alignment for Visual Navigation
Inertial sensors attached to a camera can provide valuable data about camera pose and movement. In biological vision systems, inertial cues provided by the vestibular system, are fused with vision at an early processing stage. Vision systems in autonomous vehicles can also benefit by taking inertial cues into account. In order to use off-the-shelf inertial sensors attached to a camera, appropri...
متن کامل